Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 2725, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38548751

RESUMO

Reactive Oxygen Species (ROS) derived from mitochondrial respiration are frequently cited as a major source of chromosomal DNA mutations that contribute to cancer development and aging. However, experimental evidence showing that ROS released by mitochondria can directly damage nuclear DNA is largely lacking. In this study, we investigated the effects of H2O2 released by mitochondria or produced at the nucleosomes using a titratable chemogenetic approach. This enabled us to precisely investigate to what extent DNA damage occurs downstream of near- and supraphysiological amounts of localized H2O2. Nuclear H2O2 gives rise to DNA damage and mutations and a subsequent p53 dependent cell cycle arrest. Mitochondrial H2O2 release shows none of these effects, even at levels that are orders of magnitude higher than what mitochondria normally produce. We conclude that H2O2 released from mitochondria is unlikely to directly damage nuclear genomic DNA, limiting its contribution to oncogenic transformation and aging.


Assuntos
Peróxido de Hidrogênio , Mitocôndrias , Espécies Reativas de Oxigênio/metabolismo , Peróxido de Hidrogênio/metabolismo , Mitocôndrias/metabolismo , DNA/metabolismo , Dano ao DNA , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo
2.
Cancer Cell ; 42(3): 487-496.e6, 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38471458

RESUMO

Co-culture of intestinal organoids with a colibactin-producing pks+E. coli strain (EcC) revealed mutational signatures also found in colorectal cancer (CRC). E. coli Nissle 1917 (EcN) remains a commonly used probiotic, despite harboring the pks operon and inducing double strand DNA breaks. We determine the mutagenicity of EcN and three CRC-derived pks+E. coli strains with an analytical framework based on sequence characteristic of colibactin-induced mutations. All strains, including EcN, display varying levels of mutagenic activity. Furthermore, a machine learning approach attributing individual mutations to colibactin reveals that patients with colibactin-induced mutations are diagnosed at a younger age and that colibactin can induce a specific APC mutation. These approaches allow the sensitive detection of colibactin-induced mutations in ∼12% of CRC genomes and even in whole exome sequencing data, representing a crucial step toward pinpointing the mutagenic activity of distinct pks+E. coli strains.


Assuntos
Neoplasias Colorretais , Escherichia coli , Peptídeos , Policetídeos , Humanos , Escherichia coli/genética , Mutação , Dano ao DNA , Mutagênicos , Organoides
3.
Cell Genom ; 3(9): 100389, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37719152

RESUMO

Detection of somatic mutations in single cells has been severely hampered by technical limitations of whole-genome amplification. Novel technologies including primary template-directed amplification (PTA) significantly improved the accuracy of single-cell whole-genome sequencing (WGS) but still generate hundreds of artifacts per amplification reaction. We developed a comprehensive bioinformatic workflow, called the PTA Analysis Toolbox (PTATO), to accurately detect single base substitutions, insertions-deletions (indels), and structural variants in PTA-based WGS data. PTATO includes a machine learning approach and filtering based on recurrence to distinguish PTA artifacts from true mutations with high sensitivity (up to 90%), outperforming existing bioinformatic approaches. Using PTATO, we demonstrate that hematopoietic stem cells of patients with Fanconi anemia, which cannot be analyzed using regular WGS, have normal somatic single base substitution burdens but increased numbers of deletions. Our results show that PTATO enables studying somatic mutagenesis in the genomes of single cells with unprecedented sensitivity and accuracy.

4.
Cancer Discov ; 12(8): 1860-1872, 2022 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-35678530

RESUMO

Childhood cancer survivors are confronted with various chronic health conditions like therapy-related malignancies. However, it is unclear how exposure to chemotherapy contributes to the mutation burden and clonal composition of healthy tissues early in life. Here, we studied mutation accumulation in hematopoietic stem and progenitor cells (HSPC) before and after cancer treatment of 24 children. Of these children, 19 developed therapy-related myeloid neoplasms (t-MN). Posttreatment HSPCs had an average mutation burden increase comparable to what treatment-naïve cells accumulate during 16 years of life, with excesses up to 80 years. In most children, these additional mutations were induced by clock-like processes, which are also active during healthy aging. Other patients harbored mutations that could be directly attributed to treatments like platinum-based drugs and thiopurines. Using phylogenetic inference, we demonstrate that most t-MN in children originate after the start of treatment and that leukemic clones become dominant during or directly after chemotherapy exposure. SIGNIFICANCE: Our study shows that chemotherapy increases the mutation burden of normal blood cells in cancer survivors. Only few drugs damage the DNA directly, whereas in most patients, chemotherapy-induced mutations are caused by processes similar to those present during normal aging. This article is highlighted in the In This Issue feature, p. 1825.


Assuntos
Antineoplásicos , Segunda Neoplasia Primária , Antineoplásicos/efeitos adversos , Antineoplásicos/uso terapêutico , Criança , Células-Tronco Hematopoéticas/patologia , Humanos , Mieloma Múltiplo/induzido quimicamente , Mieloma Múltiplo/genética , Mutação , Neoplasias/complicações , Neoplasias/tratamento farmacológico , Neoplasias/genética , Segunda Neoplasia Primária/induzido quimicamente , Segunda Neoplasia Primária/genética , Segunda Neoplasia Primária/patologia , Filogenia
5.
iScience ; 25(2): 103736, 2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35118356

RESUMO

Induced pluripotent stem cells (iPSCs) hold great promise for regenerative medicine, but genetic instability is a major concern. Embryonic pluripotent cells also accumulate mutations during early development, but how this relates to the mutation burden in iPSCs remains unknown. Here, we directly compared the mutation burden of cultured iPSCs with their isogenic embryonic cells during human embryogenesis. We generated developmental lineage trees of human fetuses by phylogenetic inference from somatic mutations in the genomes of multiple stem cells, which were derived from different germ layers. Using this approach, we characterized the mutations acquired pre-gastrulation and found a rate of 1.65 mutations per cell division. When cultured in hypoxic conditions, iPSCs generated from fetal stem cells of the assessed fetuses displayed a similar mutation rate and spectrum. Our results show that iPSCs maintain a genomic integrity during culture at a similar degree as their pluripotent counterparts do in vivo.

6.
BMC Genomics ; 23(1): 134, 2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-35168570

RESUMO

BACKGROUND: The collective of somatic mutations in a genome represents a record of mutational processes that have been operative in a cell. These processes can be investigated by extracting relevant mutational patterns from sequencing data. RESULTS: Here, we present the next version of MutationalPatterns, an R/Bioconductor package, which allows in-depth mutational analysis of catalogues of single and double base substitutions as well as small insertions and deletions. Major features of the package include the possibility to perform regional mutation spectra analyses and the possibility to detect strand asymmetry phenomena, such as lesion segregation. On top of this, the package also contains functions to determine how likely it is that a signature can cause damaging mutations (i.e., mutations that affect protein function). This updated package supports stricter signature refitting on known signatures in order to prevent overfitting. Using simulated mutation matrices containing varied signature contributions, we showed that reliable refitting can be achieved even when only 50 mutations are present per signature. Additionally, we incorporated bootstrapped signature refitting to assess the robustness of the signature analyses. Finally, we applied the package on genome mutation data of cell lines in which we deleted specific DNA repair processes and on large cancer datasets, to show how the package can be used to generate novel biological insights. CONCLUSIONS: This novel version of MutationalPatterns allows for more comprehensive analyses and visualization of mutational patterns in order to study the underlying processes. Ultimately, in-depth mutational analyses may contribute to improved biological insights in mechanisms of mutation accumulation as well as aid cancer diagnostics. MutationalPatterns is freely available at http://bioconductor.org/packages/MutationalPatterns .


Assuntos
Genoma Humano , Neoplasias , Análise Mutacional de DNA , Reparo do DNA , Humanos , Mutação , Acúmulo de Mutações , Neoplasias/genética
7.
Cell Genom ; 2(6): 100139, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-36778136

RESUMO

Accurate detection of somatic structural variation (SV) in cancer genomes remains a challenging problem. This is in part due to the lack of high-quality, gold-standard datasets that enable the benchmarking of experimental approaches and bioinformatic analysis pipelines. Here, we performed somatic SV analysis of the paired melanoma and normal lymphoblastoid COLO829 cell lines using four different sequencing technologies. Based on the evidence from multiple technologies combined with extensive experimental validation, we compiled a comprehensive set of carefully curated and validated somatic SVs, comprising all SV types. We demonstrate the utility of this resource by determining the SV detection performance as a function of tumor purity and sequence depth, highlighting the importance of assessing these parameters in cancer genomics projects. The truth somatic SV dataset as well as the underlying raw multi-platform sequencing data are freely available and are an important resource for community somatic benchmarking efforts.

8.
Blood Cancer Discov ; 2(5): 484-499, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34642666

RESUMO

Acquisition of oncogenic mutations with age is believed to be rate limiting for carcinogenesis. However, the incidence of leukemia in children is higher than in young adults. Here we compare somatic mutations across pediatric acute myeloid leukemia (pAML) patient-matched leukemic blasts and hematopoietic stem and progenitor cells (HSPCs), as well as HSPCs from age-matched healthy donors. HSPCs in the leukemic bone marrow have limited genetic relatedness and share few somatic mutations with the cell-of-origin of the malignant blasts, suggesting polyclonal hematopoiesis in pAML patients. Compared to normal HSPCs, a subset of pAML cases harbored more somatic mutations and a distinct composition of mutational process signatures. We hypothesize these cases might have arisen from a more committed progenitor. This subset had better outcomes than pAML cases with mutation burden comparable to age-matched healthy HSPCs. Our study provides insights into the etiology and patient stratification of pAML.


Assuntos
Leucemia Mieloide Aguda , Medula Óssea/patologia , Criança , Hematopoese , Células-Tronco Hematopoéticas/patologia , Humanos , Leucemia Mieloide Aguda/genética , Mutação , Adulto Jovem
9.
Cell Stem Cell ; 28(10): 1726-1739.e6, 2021 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-34496298

RESUMO

Genetic instability is a major concern for successful application of stem cells in regenerative medicine. However, the mutational consequences of the most applied stem cell therapy in humans, hematopoietic stem cell transplantation (HSCT), remain unknown. Here we characterized the mutation burden of hematopoietic stem and progenitor cells (HSPCs) of human HSCT recipients and their donors using whole-genome sequencing. We demonstrate that the majority of transplanted HSPCs did not display altered mutation accumulation. However, in some HSCT recipients, we identified multiple HSPCs with an increased mutation burden after transplantation. This increase could be attributed to a unique mutational signature caused by the antiviral drug ganciclovir. Using a machine learning approach, we detected this signature in cancer genomes of individuals who received HSCT or solid organ transplantation earlier in life. Antiviral treatment with nucleoside analogs can cause enhanced mutagenicity in transplant recipients, which may ultimately contribute to therapy-related carcinogenesis.


Assuntos
Antivirais/efeitos adversos , Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Mutação , Neoplasias , Antivirais/uso terapêutico , Infecções por Citomegalovirus/tratamento farmacológico , Humanos , Neoplasias/genética , Transplantados
10.
Nat Genet ; 53(8): 1187-1195, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34211178

RESUMO

Central to tumor evolution is the generation of genetic diversity. However, the extent and patterns by which de novo karyotype alterations emerge and propagate within human tumors are not well understood, especially at single-cell resolution. Here, we present 3D Live-Seq-a protocol that integrates live-cell imaging of tumor organoid outgrowth and whole-genome sequencing of each imaged cell to reconstruct evolving tumor cell karyotypes across consecutive cell generations. Using patient-derived colorectal cancer organoids and fresh tumor biopsies, we demonstrate that karyotype alterations of varying complexity are prevalent and can arise within a few cell generations. Sub-chromosomal acentric fragments were prone to replication and collective missegregation across consecutive cell divisions. In contrast, gross genome-wide karyotype alterations were generated in a single erroneous cell division, providing support that aneuploid tumor genomes can evolve via punctuated evolution. Mapping the temporal dynamics and patterns of karyotype diversification in cancer enables reconstructions of evolutionary paths to malignant fitness.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Análise de Célula Única/métodos , Proliferação de Células/genética , Cromatina/genética , Cromossomos Humanos , Dosagem de Genes , Humanos , Cariótipo , Cariotipagem , Microscopia Confocal , Mitose , Organoides/crescimento & desenvolvimento , Organoides/patologia , Fuso Acromático/genética
11.
Genome Med ; 13(1): 86, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006333

RESUMO

Here, we describe a novel approach for rapid discovery of a set of tumor-specific genomic structural variants (SVs), based on a combination of low coverage cancer genome sequencing using Oxford Nanopore with an SV calling and filtering pipeline. We applied the method to tumor samples of high-grade ovarian and prostate cancer patients and validated on average ten somatic SVs per patient with breakpoint-spanning PCR mini-amplicons. These SVs could be quantified in ctDNA samples of patients with metastatic prostate cancer using a digital PCR assay. The results suggest that SV dynamics correlate with and may improve existing treatment-response biomarkers such as PSA. https://github.com/UMCUGenetics/SHARC .


Assuntos
Biomarcadores Tumorais , DNA Tumoral Circulante , Variação Estrutural do Genoma , Técnicas de Diagnóstico Molecular , Sequenciamento por Nanoporos , Neoplasias/diagnóstico , Neoplasias/genética , Biologia Computacional/métodos , Feminino , Humanos , Biópsia Líquida/métodos , Masculino , Técnicas de Diagnóstico Molecular/métodos , Técnicas de Diagnóstico Molecular/normas , Especificidade de Órgãos/genética , Reação em Cadeia da Polimerase em Tempo Real , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Análise de Sequência de DNA
12.
Nat Commun ; 11(1): 2861, 2020 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-32504042

RESUMO

Fusion genes are hallmarks of various cancer types and important determinants for diagnosis, prognosis and treatment. Fusion gene partner choice and breakpoint-position promiscuity restricts diagnostic detection, even for known and recurrent configurations. Here, we develop FUDGE (FUsion Detection from Gene Enrichment) to accurately and impartially identify fusions. FUDGE couples target-selected and strand-specific CRISPR-Cas9 activity for fusion gene driver enrichment - without prior knowledge of fusion partner or breakpoint-location - to long read nanopore sequencing with the bioinformatics pipeline NanoFG. FUDGE has flexible target-loci choices and enables multiplexed enrichment for simultaneous analysis of several genes in multiple samples in one sequencing run. We observe on-average 665 fold breakpoint-site enrichment and identify nucleotide resolution fusion breakpoints within 2 days. The assay identifies cancer cell line and tumor sample fusions irrespective of partner gene or breakpoint-position. FUDGE is a rapid and versatile fusion detection assay for diagnostic pan-cancer fusion detection.


Assuntos
Sistemas CRISPR-Cas/genética , Fusão Gênica , Testes Genéticos/métodos , Sequenciamento por Nanoporos , Neoplasias/diagnóstico , Linhagem Celular Tumoral , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Neoplasias/genética , Análise de Sequência de DNA
13.
Mol Cancer Res ; 18(4): 537-548, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31911540

RESUMO

Fusion genes can be oncogenic drivers in a variety of cancer types and represent potential targets for targeted therapy. The BRAF gene is frequently involved in oncogenic gene fusions, with fusion frequencies of 0.2%-3% throughout different cancers. However, BRAF fusions rarely occur in the same gene configuration, potentially challenging personalized therapy design. In particular, the impact of the wide variety of fusion partners on the oncogenic role of BRAF during tumor growth and drug response is unknown. Here, we used patient-derived colorectal cancer organoids to functionally characterize and cross-compare BRAF fusions containing various partner genes (AGAP3, DLG1, and TRIM24) with respect to cellular behavior, downstream signaling activation, and response to targeted therapies. We demonstrate that 5' fusion partners mainly promote canonical oncogenic BRAF activity by replacing the auto-inhibitory N-terminal region. In addition, the 5' partner of BRAF fusions influences their subcellular localization and intracellular signaling capacity, revealing distinct subsets of affected signaling pathways and altered gene expression. Presence of the different BRAF fusions resulted in varying sensitivities to combinatorial inhibition of MEK and the EGF receptor family. However, all BRAF fusions conveyed resistance to targeted monotherapy against the EGF receptor family, suggesting that BRAF fusions should be screened alongside other MAPK pathway alterations to identify patients with metastatic colorectal cancer to exclude from anti-EGFR-targeted treatment. IMPLICATIONS: Although intracellular signaling and sensitivity to targeted therapies of BRAF fusion genes are influenced by their 5' fusion partner, we show that all investigated BRAF fusions confer resistance to clinically relevant EGFR inhibition.


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Diferenciação Celular/fisiologia , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Resistencia a Medicamentos Antineoplásicos , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Células HEK293 , Humanos , MAP Quinase Quinase Quinases/antagonistas & inibidores , MAP Quinase Quinase Quinases/metabolismo , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Terapia de Alvo Molecular , Fusão Oncogênica , Organoides , Inibidores de Proteínas Quinases/farmacologia
14.
Genome Med ; 11(1): 79, 2019 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-31801603

RESUMO

BACKGROUND: Genomic structural variants (SVs) can affect many genes and regulatory elements. Therefore, the molecular mechanisms driving the phenotypes of patients carrying de novo SVs are frequently unknown. METHODS: We applied a combination of systematic experimental and bioinformatic methods to improve the molecular diagnosis of 39 patients with multiple congenital abnormalities and/or intellectual disability harboring apparent de novo SVs, most with an inconclusive diagnosis after regular genetic testing. RESULTS: In 7 of these cases (18%), whole-genome sequencing analysis revealed disease-relevant complexities of the SVs missed in routine microarray-based analyses. We developed a computational tool to predict the effects on genes directly affected by SVs and on genes indirectly affected likely due to the changes in chromatin organization and impact on regulatory mechanisms. By combining these functional predictions with extensive phenotype information, candidate driver genes were identified in 16/39 (41%) patients. In 8 cases, evidence was found for the involvement of multiple candidate drivers contributing to different parts of the phenotypes. Subsequently, we applied this computational method to two cohorts containing a total of 379 patients with previously detected and classified de novo SVs and identified candidate driver genes in 189 cases (50%), including 40 cases whose SVs were previously not classified as pathogenic. Pathogenic position effects were predicted in 28% of all studied cases with balanced SVs and in 11% of the cases with copy number variants. CONCLUSIONS: These results demonstrate an integrated computational and experimental approach to predict driver genes based on analyses of WGS data with phenotype association and chromatin organization datasets. These analyses nominate new pathogenic loci and have strong potential to improve the molecular diagnosis of patients with de novo SVs.


Assuntos
Estudos de Associação Genética , Doenças Genéticas Inatas/diagnóstico , Doenças Genéticas Inatas/genética , Predisposição Genética para Doença , Variação Genética , Fenótipo , Biologia Computacional/métodos , Variações do Número de Cópias de DNA , Genoma Humano , Variação Estrutural do Genoma , Humanos , Anotação de Sequência Molecular , Sequenciamento Completo do Genoma
15.
Elife ; 82019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31778112

RESUMO

Cancer cells often harbor chromosomes in abnormal numbers and with aberrant structure. The consequences of these chromosomal aberrations are difficult to study in cancer, and therefore several model systems have been developed in recent years. We show that human cells with extra chromosome engineered via microcell-mediated chromosome transfer often gain massive chromosomal rearrangements. The rearrangements arose by chromosome shattering and rejoining as well as by replication-dependent mechanisms. We show that the isolated micronuclei lack functional lamin B1 and become prone to envelope rupture, which leads to DNA damage and aberrant replication. The presence of functional lamin B1 partly correlates with micronuclei size, suggesting that the proper assembly of nuclear envelope might be sensitive to membrane curvature. The chromosomal rearrangements in trisomic cells provide growth advantage compared to cells without rearrangements. Our model system enables to study mechanisms of massive chromosomal rearrangements of any chromosome and their consequences in human cells.


Assuntos
Cromotripsia , Instabilidade Genômica , Animais , Linhagem Celular , Núcleo Celular/química , Dano ao DNA , Replicação do DNA , Humanos , Lamina Tipo B/análise , Camundongos , Micronúcleos com Defeito Cromossômico
16.
Nat Commun ; 10(1): 1477, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30931947

RESUMO

Phenotypic and biochemical categorization of humans with detrimental variants can provide valuable information on gene function. We illustrate this with the identification of two different homozygous variants resulting in enzymatic loss-of-function in LDHD, encoding lactate dehydrogenase D, in two unrelated patients with elevated D-lactate urinary excretion and plasma concentrations. We establish the role of LDHD by demonstrating that LDHD loss-of-function in zebrafish results in increased concentrations of D-lactate. D-lactate levels are rescued by wildtype LDHD but not by patients' variant LDHD, confirming these variants' loss-of-function effect. This work provides the first in vivo evidence that LDHD is responsible for human D-lactate metabolism. This broadens the differential diagnosis of D-lactic acidosis, an increasingly recognized complication of short bowel syndrome with unpredictable onset and severity. With the expanding incidence of intestinal resection for disease or obesity, the elucidation of this metabolic pathway may have relevance for those patients with D-lactic acidosis.


Assuntos
Acidose Láctica/diagnóstico , Lactato Desidrogenases/genética , Ácido Láctico/metabolismo , Mutação com Perda de Função , Síndrome do Intestino Curto/metabolismo , Espasmos Infantis/diagnóstico , Acidose Láctica/genética , Adulto , Animais , Consanguinidade , Diagnóstico Diferencial , Homozigoto , Humanos , Lactente , Lactato Desidrogenases/deficiência , Masculino , Espasmos Infantis/genética , Peixe-Zebra
17.
Nat Med ; 25(5): 838-849, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31011202

RESUMO

Ovarian cancer (OC) is a heterogeneous disease usually diagnosed at a late stage. Experimental in vitro models that faithfully capture the hallmarks and tumor heterogeneity of OC are limited and hard to establish. We present a protocol that enables efficient derivation and long-term expansion of OC organoids. Utilizing this protocol, we have established 56 organoid lines from 32 patients, representing all main subtypes of OC. OC organoids recapitulate histological and genomic features of the pertinent lesion from which they were derived, illustrating intra- and interpatient heterogeneity, and can be genetically modified. We show that OC organoids can be used for drug-screening assays and capture different tumor subtype responses to the gold standard platinum-based chemotherapy, including acquisition of chemoresistance in recurrent disease. Finally, OC organoids can be xenografted, enabling in vivo drug-sensitivity assays. Taken together, this demonstrates their potential application for research and personalized medicine.


Assuntos
Organoides/patologia , Neoplasias Ovarianas/patologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Genômica , Xenoenxertos , Humanos , Camundongos SCID , Pessoa de Meia-Idade , Mutação , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Medicina de Precisão
18.
Nat Commun ; 8(1): 1326, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-29109544

RESUMO

Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.


Assuntos
Mapeamento Cromossômico/métodos , Cromotripsia , Análise Mutacional de DNA/métodos , Nanoporos , Anormalidades Múltiplas/genética , Algoritmos , Mapeamento Cromossômico/estatística & dados numéricos , Biologia Computacional , Análise Mutacional de DNA/estatística & dados numéricos , Rearranjo Gênico , Variação Genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Sequenciamento de Nucleotídeos em Larga Escala/estatística & dados numéricos , Humanos
19.
Cancer Res ; 77(14): 3814-3822, 2017 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-28512242

RESUMO

Genomic rearrangements that give rise to oncogenic gene fusions can offer actionable targets for cancer therapy. Here we present a systematic analysis of oncogenic gene fusions among a clinically well-characterized, prospectively collected set of 278 primary colon cancers spanning diverse tumor stages and clinical outcomes. Gene fusions and somatic genetic variations were identified in fresh frozen clinical specimens by Illumina RNA-sequencing, the STAR fusion gene detection pipeline, and GATK RNA-seq variant calling. We considered gene fusions to be pathogenically relevant when recurrent, producing divergent gene expression (outlier analysis), or as functionally important (e.g., kinase fusions). Overall, 2.5% of all specimens were defined as harboring a relevant gene fusion (kinase fusions 1.8%). Novel configurations of BRAF, NTRK3, and RET gene fusions resulting from chromosomal translocations were identified. An R-spondin fusion was found in only one tumor (0.35%), much less than an earlier reported frequency of 10% in colorectal cancers. We also found a novel fusion involving USP9X-ERAS formed by chromothripsis and leading to high expression of ERAS, a constitutively active RAS protein normally expressed only in embryonic stem cells. This USP9X-ERAS fusion appeared highly oncogenic on the basis of its ability to activate AKT signaling. Oncogenic fusions were identified only in lymph node-negative tumors that lacked BRAF or KRAS mutations. In summary, we identified several novel oncogenic gene fusions in colorectal cancer that may drive malignant development and offer new targets for personalized therapy. Cancer Res; 77(14); 3814-22. ©2017 AACR.


Assuntos
Neoplasias Colorretais/genética , Perfilação da Expressão Gênica/métodos , Fusão Oncogênica , Idoso , Carcinogênese/genética , Neoplasias Colorretais/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Transdução de Sinais
20.
Genome Med ; 9(1): 9, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28126037

RESUMO

BACKGROUND: Germline chromothripsis causes complex genomic rearrangements that are likely to affect multiple genes and their regulatory contexts. The contribution of individual rearrangements and affected genes to the phenotypes of patients with complex germline genomic rearrangements is generally unknown. METHODS: To dissect the impact of germline chromothripsis in a relevant developmental context, we performed trio-based RNA expression analysis on blood cells, induced pluripotent stem cells (iPSCs), and iPSC-derived neuronal cells from a patient with de novo germline chromothripsis and both healthy parents. In addition, Hi-C and 4C-seq experiments were performed to determine the effects of the genomic rearrangements on transcription regulation of genes in the proximity of the breakpoint junctions. RESULTS: Sixty-seven genes are located within 1 Mb of the complex chromothripsis rearrangements involving 17 breakpoints on four chromosomes. We find that three of these genes (FOXP1, DPYD, and TWIST1) are both associated with developmental disorders and differentially expressed in the patient. Interestingly, the effect on TWIST1 expression was exclusively detectable in the patient's iPSC-derived neuronal cells, stressing the need for studying developmental disorders in the biologically relevant context. Chromosome conformation capture analyses show that TWIST1 lost genomic interactions with several enhancers due to the chromothripsis event, which likely led to deregulation of TWIST1 expression and contributed to the patient's craniosynostosis phenotype. CONCLUSIONS: We demonstrate that a combination of patient-derived iPSC differentiation and trio-based molecular profiling is a powerful approach to improve the interpretation of pathogenic complex genomic rearrangements. Here we have applied this approach to identify misexpression of TWIST1, FOXP1, and DPYD as key contributors to the complex congenital phenotype resulting from germline chromothripsis rearrangements.


Assuntos
Cromotripsia , Mutação em Linhagem Germinativa , Transcriptoma , Di-Hidrouracila Desidrogenase (NADP)/genética , Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Leucócitos/metabolismo , Neurônios/metabolismo , Proteínas Nucleares/genética , Proteínas Repressoras/genética , Proteína 1 Relacionada a Twist/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...